
The word "antioxidant" is probably the word most often heard in social media ads, whether in the context of food, cosmetics, etc. And, in fact, we can (and should!) ensure a high exogenous supply of antioxidants, being this an important issue in different contexts. What possibly fewer people know is that we already have several internal antioxidants. Therefore, we can already divide the antioxidants into 2 categories:
- Exogenous antioxidants, which are those that we obtain mainly from the diet;
- Endogenous antioxidants, which are those that we produce in our cells and that, under normal conditions, are always present in them.
Another possible classification is as follows:
- Enzymatic antioxidants, which are enzymes that we produce and whose function is to eliminate reactive oxygen species. For example, there is an enzyme, called superoxide dismutase that catalyzes the conversion of 2 superoxide anions (that are free radicals), to a hydrogen peroxide molecule (which, although being a reactive oxygen species, is not a free radical). Another example is catalase (you can read more about thisenzyme here), which converts hydrogen peroxide into two products potentially harmless to our biomolecules, water and oxygen.
- Non-enzymatic antioxidants, which are molecules that function as antioxidants because they react with reactive oxygen species, promoting their inactivation. In the background, they are molecules that "generously" put themselves at the forefront of the battle against the pro-oxidants. Therefore, these pro-oxidants will react with them, promoting their oxidation. This situation is beneficial, because it is the antioxidants that end up getting oxidized, sparing our biomolecules from oxidative damage. These non-enzymatic antioxidants often have in their composition benzene rings which stabilize the presence of a possible unpaired electron, and may also react with one another so that their unpaired electrons become paired.

Therefore, if we look at the two classifications, it is easy to see that the exogenous antioxidants are always non-enzymatic, and that the endogenous antioxidants can be enzymatic or non-enzymatic. Regardless of the class where they are inserted, they are extremely important molecules and if we can guarantee an adequate contribution of them, surely we will be better prepared to deal with oxidative stress.
Great tips regrading antioxidants. You provided the best information which helps us a lot. Thanks for sharing the wonderful information.
ReplyDelete